
SMS Verify - Tutorial: Send one-time
passcode with Telesign Java SDK

This tutorial teaches you how to use the Telesign Java SDK to send an SMS
with a one-time passcode (OTP). Go to GitHub to see the complete sample
code.

Before you begin

Make sure you have the following before you start:

• Authentication credentials: Your Customer ID and API Key. If you
need help finding these items, go to the support article How do I
find my Customer ID and API Key.

• Testing device: A mobile phone on which you can receive SMS.
• Gradle: This package manager isn't required to use the SDK, but it

is required for this tutorial.

NOTE:
This tutorial uses the following:

• MacOS
• Java OpenJDK v19.0.2
• Gradle 8.0.2

Please modify accordingly if your developer environment differs from these
details.

Set up your project

CAUTION
You should use the Full-service SDK for SMS Verify even if you have a Self-
service account!

1. Follow the Telesign Full-service Java SDK install instructions on
GitHub here, incorporating the following details:

o Use sms_verify as the project directory name.
o Use JUnit 4 as the test framework.
o Use sendOTP as the project name.

https://developer.telesign.com/enterprise/docs/sms-verify-tutorial-send-one-time-passcode-with-telesign-java-sdk#sample-code
https://developer.telesign.com/enterprise/docs/sms-verify-tutorial-send-one-time-passcode-with-telesign-java-sdk#sample-code
https://support.telesign.com/s/article/Find-Customer-ID-and-API-Key
https://support.telesign.com/s/article/Find-Customer-ID-and-API-Key
https://github.com/TeleSign/java_telesign_enterprise

o Use sendOTP as the source package name.

You should end up in the top-level directory ("sms_verify") for your
project in the Terminal. This directory should contain an initialized
Gradle project with the Telesign Self-service SDK included in its
dependencies and .java source files from the Telesign Full-service
SDK copied into it.

2. From the top level of your project, delete the folder
"app/src/test/". No tests are included in this tutorial.

Terminal

rm -r app/src/test/

3. Open the file "build.gradle.kts". At the bottom of this file, add the
following declaration.

Java

tasks.named<JavaExec>("run") {

 standardInput = System.`in`

}

This is needed to enable the Scanner utility to work properly with
Gradle. We'll be using Scanner to collect input on the command
line.

Create code to send the SMS

4. Open the file "app/src/main/java/sendOTP/App.java".

5. Add the imports below between the package declaration and the
App class declaration:

Java

import com.telesign.RestClient;

import com.telesign.Util;

import com.telesign.enterprise.VerifyClient;

import java.util.HashMap;

import java.util.Scanner;

These imports reference selected functionality from the Telesign
Self-service and Full-service SDKs, as well as some other Java
utilities.

6. Replace the the default App class with the following basic
structure.

Java

public class App {

 public static void main(String[] args) {

 }

}

In the next step, you will begin adding statements to
the main function in the App class.

7. Define variables in the main function to store your authentication
credentials. For testing purposes, you can just overwrite the
default values below or use environment variables.

Java

String customerId = System.getenv().getOrDefault("CUSTOMER_ID",

"FFFFFFFF-EEEE-DDDD-1234-AB1234567890");

String apiKey = System.getenv().getOrDefault("API_KEY",

"ABC12345yusumoN6BYsBVkh+yRJ5czgsnCehZaOYldPJdmFh6NeX8kunZ2zU1YWaUw/

0wV6xfw==");

8. Define a variable to hold the recipient's phone number. For this
tutorial, hardcode your testing device's phone number or pull it
from an environment variable.

Java

String phoneNumber = System.getenv().getOrDefault("PHONE_NUMBER",

"11234567890");

NOTE:
In your production integration, pull the phone number from your
recipient database instead of hardcoding it.

9. Randomly generate your OTP. We will use a Telesign SDK utility for
this. The parameter value 5 specifies the number of digits
generated:

Java

String verifyCode = Util.randomWithNDigits(5);

CAUTION
The method used above to generate a code is actually pseudo-
random. In your production implementation, you might want to
use a more robust method for randomizing.

10. Create a new hash map, and use it to store the params you are
going to send to the Telesign Verify API. The only param included
in this tutorial is the verification code.

Java

HashMap<String, String> params = new HashMap<>();

11. Create a try-catch structure.

Java

try {

} catch (Exception e) {

}

12. In the try block, add code to instantiate a Telesign verification
client object with your authentication credentials.

Java

VerifyClient verifyClient = new VerifyClient(customerId, apiKey);

NOTE:
When you use a Telesign SDK to make your request, authentication
is handled behind-the-scenes for you. All you need to provide is
your Customer ID and API Key. The SDKs apply Digest
authentication whenever they make a request to a Telesign service
where it is supported. When Digest authentication is not
supported, the SDKs apply Basic authentication.

13. Next in the try block, make the request and capture the response.
Behind the scenes, this sends an HTTP request to the Telesign
Verify API. Telesign then sends an SMS with an OTP to the end-
user:

Java

RestClient.TelesignResponse telesignResponse =

verifyClient.sms(phoneNumber, params);

14. Next in the try block, display the response in the console for
debugging purposes. In your production code, you would likely
remove this.

Java

System.out.println("\n" + "Response HTTP status:" +

telesignResponse.statusCode);

System.out.println("Response body:" + telesignResponse.body + "\n");

15. Next in the try block, collect the asserted OTP entered by the end-
user in your application. You can simulate this by prompting for
input from the command line:

Java

System.out.println("Please enter the verification code you were

sent:");

Scanner s = new Scanner(System.in);

String code = s.next();

NOTE:
In your production implementation, collect input from your
website or other application where the end-user is trying to log in.

16. Next in the try block, determine if the user-entered code matches
your OTP, and resolve the login attempt accordingly. You can
simulate this by reporting whether the codes match.

Java

if (verifyCode.equalsIgnoreCase(code)) {

 System.out.println("Your code is correct.");

} else {

 System.out.println("Your code is incorrect.");

}

NOTE:
In your production implementation, add code here to log in the
user when the user-entered code matches the OTP.

17. In the catch block, add code to print any error that might occur.

Java

System.out.println((char)27 + "[31m" + "\nAn exception

occurred.\nERROR: " + e.getMessage());

Test your integration

18. Switch from your editor to the terminal and build your project.
Make sure you are in the top-level directory of your project
("sms_verify").

Terminal

./gradlew build

19. Run your project.

Terminal

./gradlew run

You should receive an SMS on your phone that looks like this:

20. Enter the OTP you received on your phone at the command
prompt on the terminal to test that verification is successful:

Terminal

Please enter the verification code you were sent: 82139

Your code is correct.

21. Now let's test an unsuccessful verification. Run again.

Terminal

./gradlew run

You should receive a new OTP on your phone.

22. Enter something else that isn't correct at the command prompt on
the terminal and you should get a message that verification failed:

Terminal

Please enter the verification code you were sent: 55555

Your code is incorrect.

Sample code

The complete sample code for this tutorial can be found on GitHub.

https://github.com/TeleSign/sample_code/tree/master/java/sdk/java_telesign_enterprise/sms_verify

