
Tutorial: Run a parallel workload with

Azure Batch using the .NET API

• Article

• 04/19/2023

• 17 contributors

In this article

1. Prerequisites

2. Sign in to Azure

3. Add an application package

4. Get account credentials

Use Azure Batch to run large-scale parallel and high-performance computing (HPC)

batch jobs efficiently in Azure. This tutorial walks through a C# example of running a

parallel workload using Batch. You learn a common Batch application workflow and how

to interact programmatically with Batch and Storage resources.

• Add an application package to your Batch account.

• Authenticate with Batch and Storage accounts.

• Upload input files to Storage.

• Create a pool of compute nodes to run an application.

• Create a job and tasks to process input files.

• Monitor task execution.

• Retrieve output files.

In this tutorial, you convert MP4 media files to MP3 format, in parallel, by using

the ffmpeg open-source tool.

If you don't have an Azure subscription, create an Azure free account before you begin.

Prerequisites

• Visual Studio 2017 or later, or .NET Core SDK for Linux, macOS, or Windows.

• A Batch account and a linked Azure Storage account. To create these

accounts, see the Batch quickstart guides for the Azure portal or Azure CLI.

https://learn.microsoft.com/en-us/azure/batch/tutorial-parallel-dotnet#prerequisites
https://learn.microsoft.com/en-us/azure/batch/tutorial-parallel-dotnet#sign-in-to-azure
https://learn.microsoft.com/en-us/azure/batch/tutorial-parallel-dotnet#add-an-application-package
https://learn.microsoft.com/en-us/azure/batch/tutorial-parallel-dotnet#get-account-credentials
https://ffmpeg.org/
https://learn.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://www.visualstudio.com/vs
https://dotnet.microsoft.com/download/dotnet
https://learn.microsoft.com/en-us/azure/batch/quick-create-portal
https://learn.microsoft.com/en-us/azure/batch/quick-create-cli

• Download the appropriate version of ffmpeg for your use case to your local

computer. This tutorial and the related sample app use the Windows 64-bit

full-build version of ffmpeg 4.3.1. For this tutorial, you only need the zip file.

You do not need to unzip the file or install it locally.

Sign in to Azure

Sign in to the Azure portal.

Add an application package

Use the Azure portal to add ffmpeg to your Batch account as an application package.

Application packages help you manage task applications and their deployment to the

compute nodes in your pool.

1. In the Azure portal, click More services > Batch accounts, and select the

name of your Batch account.

2. Click Applications > Add.

3. Enter ffmpeg in the Application Id field, and a package version of 4.3.1 in

the Version field. Select the ffmpeg zip file that you downloaded, and then

select Submit. The ffmpeg application package is added to your Batch

account.

https://github.com/GyanD/codexffmpeg/releases/tag/4.3.1-2020-11-08
https://github.com/GyanD/codexffmpeg/releases/tag/4.3.1-2020-11-08
https://portal.azure.com/
https://learn.microsoft.com/en-us/azure/batch/batch-application-packages

Get account credentials

For this example, you need to provide credentials for your Batch and Storage accounts.

A straightforward way to get the necessary credentials is in the Azure portal. (You can

also get these credentials using the Azure APIs or command-line tools.)

1. Select All services > Batch accounts, and then select the name of your

Batch account.

2. To see the Batch credentials, select Keys. Copy the values of Batch

account, URL, and Primary access key to a text editor.

3. To see the Storage account name and keys, select Storage account. Copy

the values of Storage account name and Key1 to a text editor.

Download and run the sample app

Download the sample app

Download or clone the sample app from GitHub. To clone the sample app repo with a

Git client, use the following command:

Copy
git clone https://github.com/Azure-Samples/batch-dotnet-ffmpeg-tutorial.git

https://github.com/Azure-Samples/batch-dotnet-ffmpeg-tutorial

Navigate to the directory that contains the Visual Studio solution

file BatchDotNetFfmpegTutorial.sln.

Open the solution file in Visual Studio, and update the credential strings

in Program.cs with the values you obtained for your accounts. For example:

C#Copy
// Batch account credentials
private const string BatchAccountName = "yourbatchaccount";
private const string BatchAccountKey =
"xxxxxxxxxxxxxxxxE+yXrRvJAqT9BlXwwo1CwF+SwAYOxxxxxxxxxxxxxxxx43pXi/gdiATkvbpLRl3x14pc
EQ==";
private const string BatchAccountUrl =
"https://yourbatchaccount.yourbatchregion.batch.azure.com";

// Storage account credentials
private const string StorageAccountName = "yourstorageaccount";
private const string StorageAccountKey =
"xxxxxxxxxxxxxxxxy4/xxxxxxxxxxxxxxxxfwpbIC5aAWA8wDu+AFXZB827Mt9lybZB1nUcQbQiUrkPtilK5
BQ==";

 Note

To simplify the example, the Batch and Storage account credentials appear in clear text.

In practice, we recommend that you restrict access to the credentials and refer to them

in your code using environment variables or a configuration file. For examples, see the

Azure Batch code samples repo.

Also, make sure that the ffmpeg application package reference in the solution matches

the identifier and version of the ffmpeg package that you uploaded to your Batch

account. For example, ffmpeg and 4.3.1.

C#Copy
const string appPackageId = "ffmpeg";
const string appPackageVersion = "4.3.1";

Build and run the sample project

Build and run the application in Visual Studio, or at the command line with the dotnet

build and dotnet run commands. After running the application, review the code to learn

what each part of the application does. For example, in Visual Studio:

1. Right-click the solution in Solution Explorer and select Build Solution.

https://github.com/Azure-Samples/azure-batch-samples

2. Confirm the restoration of any NuGet packages, if you're prompted. If you

need to download missing packages, ensure the NuGet Package Manager is

installed.

3. Run the solution. When you run the sample application, the console output

is similar to the following. During execution, you experience a pause

at Monitoring all tasks for 'Completed' state, timeout in

00:30:00... while the pool's compute nodes are started.

Copy
Sample start: 11/19/2018 3:20:21 PM

Container [input] created.
Container [output] created.
Uploading file LowPriVMs-1.mp4 to container [input]...
Uploading file LowPriVMs-2.mp4 to container [input]...
Uploading file LowPriVMs-3.mp4 to container [input]...
Uploading file LowPriVMs-4.mp4 to container [input]...
Uploading file LowPriVMs-5.mp4 to container [input]...
Creating pool [WinFFmpegPool]...
Creating job [WinFFmpegJob]...
Adding 5 tasks to job [WinFFmpegJob]...
Monitoring all tasks for 'Completed' state, timeout in 00:30:00...
Success! All tasks completed successfully within the specified timeout period.
Deleting container [input]...

Sample end: 11/19/2018 3:29:36 PM
Elapsed time: 00:09:14.3418742

Go to your Batch account in the Azure portal to monitor the pool, compute nodes, job,

and tasks. For example, to see a heat map of the compute nodes in your pool,

click Pools > WinFFmpegPool.

When tasks are running, the heat map is similar to the following:

https://docs.nuget.org/consume/installing-nuget

Typical execution time is approximately 10 minutes when you run the application in its

default configuration. Pool creation takes the most time.

Retrieve output files

You can use the Azure portal to download the output MP3 files generated by the

ffmpeg tasks.

1. Click All services > Storage accounts, and then click the name of your

storage account.

2. Click Blobs > output.

3. Right-click one of the output MP3 files and then click Download. Follow the

prompts in your browser to open or save the file.

Although not shown in this sample, you can also download the files programmatically

from the compute nodes or from the storage container.

Review the code

The following sections break down the sample application into the steps that it performs

to process a workload in the Batch service. Refer to the file Program.cs in the solution

while you read the rest of this article, since not every line of code in the sample is

discussed.

Authenticate Blob and Batch clients

To interact with the linked storage account, the app uses the Azure Storage Client

Library for .NET. It creates a reference to the account with CloudStorageAccount,

authenticating using shared key authentication. Then, it creates a CloudBlobClient.

C#Copy
// Construct the Storage account connection string
string storageConnectionString =
String.Format("DefaultEndpointsProtocol=https;AccountName={0};AccountKey={1}",
 StorageAccountName, StorageAccountKey);

// Retrieve the storage account
CloudStorageAccount storageAccount =
CloudStorageAccount.Parse(storageConnectionString);

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();

The app creates a BatchClient object to create and manage pools, jobs, and tasks in the

Batch service. The Batch client in the sample uses shared key authentication. Batch also

supports authentication through Azure Active Directory to authenticate individual users

or an unattended application.

C#Copy
BatchSharedKeyCredentials sharedKeyCredentials = new
BatchSharedKeyCredentials(BatchAccountUrl, BatchAccountName, BatchAccountKey);

using (BatchClient batchClient = BatchClient.Open(sharedKeyCredentials))
...

Upload input files

The app passes the blobClient object to the CreateContainerIfNotExistAsync method to

create a storage container for the input files (MP4 format) and a container for the task

output.

C#Copy
CreateContainerIfNotExistAsync(blobClient, inputContainerName);
CreateContainerIfNotExistAsync(blobClient, outputContainerName);

Then, files are uploaded to the input container from the local InputFiles folder. The files

in storage are defined as Batch ResourceFile objects that Batch can later download to

compute nodes.

Two methods in Program.cs are involved in uploading the files:

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.table.cloudstorageaccount
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.storage.blob.cloudblobclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.batchclient
https://learn.microsoft.com/en-us/azure/batch/batch-aad-auth
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.resourcefile

• UploadFilesToContainerAsync: Returns a collection of ResourceFile objects

and internally calls UploadResourceFileToContainerAsync to upload each file

that is passed in the inputFilePaths parameter.

• UploadResourceFileToContainerAsync: Uploads each file as a blob to the input

container. After uploading the file, it obtains a shared access signature (SAS)

for the blob and returns a ResourceFile object to represent it.

C#Copy
string inputPath = Path.Combine(Environment.CurrentDirectory, "InputFiles");

List<string> inputFilePaths = new
List<string>(Directory.GetFileSystemEntries(inputPath, "*.mp4",
 SearchOption.TopDirectoryOnly));

List<ResourceFile> inputFiles = await UploadFilesToContainerAsync(
 blobClient,
 inputContainerName,
 inputFilePaths);

For details about uploading files as blobs to a storage account with .NET, see Upload,

download, and list blobs using .NET.

Create a pool of compute nodes

Next, the sample creates a pool of compute nodes in the Batch account with a call

to CreatePoolIfNotExistAsync. This defined method uses

the BatchClient.PoolOperations.CreatePool method to set the number of nodes, VM

size, and a pool configuration. Here, a VirtualMachineConfiguration object specifies

an ImageReference to a Windows Server image published in the Azure Marketplace.

Batch supports a wide range of VM images in the Azure Marketplace, as well as custom

VM images.

The number of nodes and VM size are set using defined constants. Batch supports

dedicated nodes and Spot nodes, and you can use either or both in your pools.

Dedicated nodes are reserved for your pool. Spot nodes are offered at a reduced price

from surplus VM capacity in Azure. Spot nodes become unavailable if Azure does not

have enough capacity. The sample by default creates a pool containing only 5 Spot

nodes in size Standard_A1_v2.

 Note

Be sure you check your node quotas. See Batch service quotas and limits for

instructions on how to create a quota request.

https://learn.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.pooloperations.createpool
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.virtualmachineconfiguration
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.imagereference
https://learn.microsoft.com/en-us/azure/batch/batch-spot-vms
https://learn.microsoft.com/en-us/azure/batch/batch-quota-limit#increase-a-quota

The ffmpeg application is deployed to the compute nodes by adding

an ApplicationPackageReference to the pool configuration.

The CommitAsync method submits the pool to the Batch service.

C#Copy
ImageReference imageReference = new ImageReference(
 publisher: "MicrosoftWindowsServer",
 offer: "WindowsServer",
 sku: "2016-Datacenter-smalldisk",
 version: "latest");

VirtualMachineConfiguration virtualMachineConfiguration =
 new VirtualMachineConfiguration(
 imageReference: imageReference,
 nodeAgentSkuId: "batch.node.windows amd64");

pool = batchClient.PoolOperations.CreatePool(
 poolId: poolId,
 targetDedicatedComputeNodes: DedicatedNodeCount,
 targetLowPriorityComputeNodes: LowPriorityNodeCount,
 virtualMachineSize: PoolVMSize,
 virtualMachineConfiguration: virtualMachineConfiguration);

pool.ApplicationPackageReferences = new List<ApplicationPackageReference>
 {
 new ApplicationPackageReference {
 ApplicationId = appPackageId,
 Version = appPackageVersion}};

await pool.CommitAsync();

Create a job

A Batch job specifies a pool to run tasks on and optional settings such as a priority and

schedule for the work. The sample creates a job with a call to CreateJobAsync. This

defined method uses the BatchClient.JobOperations.CreateJob method to create a job

on your pool.

The CommitAsync method submits the job to the Batch service. Initially the job has no

tasks.

C#Copy
CloudJob job = batchClient.JobOperations.CreateJob();
job.Id = JobId;
job.PoolInformation = new PoolInformation { PoolId = PoolId };

await job.CommitAsync();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.applicationpackagereference
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.cloudpool.commitasync
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.joboperations.createjob
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.cloudjob.commitasync

Create tasks

The sample creates tasks in the job with a call to the AddTasksAsync method, which

creates a list of CloudTask objects. Each CloudTask runs ffmpeg to process an

input ResourceFile object using a CommandLine property. ffmpeg was previously

installed on each node when the pool was created. Here, the command line runs ffmpeg

to convert each input MP4 (video) file to an MP3 (audio) file.

The sample creates an OutputFile object for the MP3 file after running the command

line. Each task's output files (one, in this case) are uploaded to a container in the linked

storage account, using the task's OutputFiles property. Previously in the code sample, a

shared access signature URL (outputContainerSasUrl) was obtained to provide write

access to the output container. Note the conditions set on the outputFile object. An

output file from a task is only uploaded to the container after the task has successfully

completed (OutputFileUploadCondition.TaskSuccess). See the full code sample on GitHub

for further implementation details.

Then, the sample adds tasks to the job with the AddTaskAsync method, which queues

them to run on the compute nodes.

Replace the executable's file path with the name of the version that you downloaded.

This sample code uses the example ffmpeg-4.3.1-2020-11-08-full_build.

C#Copy
 // Create a collection to hold the tasks added to the job.
List<CloudTask> tasks = new List<CloudTask>();

for (int i = 0; i < inputFiles.Count; i++)
{
 string taskId = String.Format("Task{0}", i);

 // Define task command line to convert each input file.
 string appPath = String.Format("%AZ_BATCH_APP_PACKAGE_{0}#{1}%", appPackageId,
appPackageVersion);
 string inputMediaFile = inputFiles[i].FilePath;
 string outputMediaFile = String.Format("{0}{1}",
 System.IO.Path.GetFileNameWithoutExtension(inputMediaFile),
 ".mp3");
 string taskCommandLine = String.Format("cmd /c {0}\\ffmpeg-4.3.1-2020-09-21-
full_build\\bin\\ffmpeg.exe -i {1} {2}", appPath, inputMediaFile, outputMediaFile);

 // Create a cloud task (with the task ID and command line)
 CloudTask task = new CloudTask(taskId, taskCommandLine);
 task.ResourceFiles = new List<ResourceFile> { inputFiles[i] };

 // Task output file
 List<OutputFile> outputFileList = new List<OutputFile>();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.cloudtask
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.cloudtask.commandline
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.outputfile
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.cloudtask.outputfiles
https://github.com/Azure-Samples/batch-dotnet-ffmpeg-tutorial
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.joboperations.addtaskasync

 OutputFileBlobContainerDestination outputContainer = new
OutputFileBlobContainerDestination(outputContainerSasUrl);
 OutputFile outputFile = new OutputFile(outputMediaFile,
 new OutputFileDestination(outputContainer),
 new OutputFileUploadOptions(OutputFileUploadCondition.TaskSuccess));
 outputFileList.Add(outputFile);
 task.OutputFiles = outputFileList;
 tasks.Add(task);
}

// Add tasks as a collection
await batchClient.JobOperations.AddTaskAsync(jobId, tasks);
return tasks

Monitor tasks

When Batch adds tasks to a job, the service automatically queues and schedules them

for execution on compute nodes in the associated pool. Based on the settings you

specify, Batch handles all task queuing, scheduling, retrying, and other task

administration duties.

There are many approaches to monitoring task execution. This sample defines

a MonitorTasks method to report only on completion and task failure or success states.

The MonitorTasks code specifies an ODATADetailLevel to efficiently select only minimal

information about the tasks. Then, it creates a TaskStateMonitor, which provides helper

utilities for monitoring task states. In MonitorTasks, the sample waits for all tasks to

reach TaskState.Completed within a time limit. Then it terminates the job and reports on

any tasks that completed but may have encountered a failure such as a non-zero exit

code.

C#Copy
TaskStateMonitor taskStateMonitor = batchClient.Utilities.CreateTaskStateMonitor();
try
{
 await taskStateMonitor.WhenAll(addedTasks, TaskState.Completed, timeout);
}
catch (TimeoutException)
{
 batchClient.JobOperations.TerminateJob(jobId);
 Console.WriteLine(incompleteMessage);
 return false;
}
batchClient.JobOperations.TerminateJob(jobId);
 Console.WriteLine(completeMessage);
...

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.odatadetaillevel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.taskstatemonitor

Clean up resources

After it runs the tasks, the app automatically deletes the input storage container it

created, and gives you the option to delete the Batch pool and job. The

BatchClient's JobOperations and PoolOperations classes both have corresponding

delete methods, which are called if you confirm deletion. Although you're not charged

for jobs and tasks themselves, you are charged for compute nodes. Thus, we

recommend that you allocate pools only as needed. When you delete the pool, all task

output on the nodes is deleted. However, the output files remain in the storage account.

When no longer needed, delete the resource group, Batch account, and storage

account. To do so in the Azure portal, select the resource group for the Batch account

and click Delete resource group.

Next steps

In this tutorial, you learned how to:

• Add an application package to your Batch account.

• Authenticate with Batch and Storage accounts.

• Upload input files to Storage.

• Create a pool of compute nodes to run an application.

• Create a job and tasks to process input files.

• Monitor task execution.

• Retrieve output files.

For more examples of using the .NET API to schedule and process Batch workloads, see

the Batch C# samples on GitHub.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.batchclient.joboperations
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.batch.batchclient.pooloperations
https://github.com/Azure-Samples/azure-batch-samples/tree/master/CSharp

