
Developing Firefly Plugins

Introduction

Firefly plugins allow your app to use Firefly technology for content-aware operations. When Firefly identifies an item,

users can tap the identified item's label to see actions to take for that item. The available actions for an identified item

can be built in to Firefly, or you can provide additional actions through plugins. An example of a built-in action could

be purchasing the identified item from Amazon, or sharing that item's information in email or social networks. For

plugin actions, you could provide a VOIP plugin that allows users to dial a phone number identified by Firefly using

VOIP. Or you could provide a plugin that allows users to purchase concert tickets for a Firefly-identified performer if

there is an available performance within a 50-mile radius of the user's current location. All Firefly plugins rely on

Firefly's identification capabilities to provide content for their operations.

This document describes how Firefly plugins work so that you can understand how to write your own.

Overview

When Firefly scans an item, it attempts to perform an identification. If Firefly identifies the item, it creates a digital

representation of the item called a digital entity. A digital entity is made up of one or more facets, each of which

describes an aspect of the identified item. For example, if the identified item is a book, the digital entity includes a

book facet, which includes information such as the title, authors, publisher, release date, ISBN-10, and ISBN-13. If

the book is sold by Amazon, the digital entity also contains a product details facet, which includes information such as

ASIN, customer rating, department, and the product's Amazon.com URL. Similarly, an identified song's digital entity

may contain a music facet and product details facet.

When a plugin is first installed, it registers with Firefly to tell the system what types of identifications it is interested in

processing. To do this, the plugin defines a set of filters that specifies what types of facets it wants to receive. There

are four types of filters available:

▪ The required filter requires that a digital entity contain all of the given types of facets for the item to

be processed by the plugin. Firefly passes all the filtered facets to the plugin.

▪ The any-of filter requires that the digital entity contain at least one of the given types of facets for the

item to be processed by the plugin. If more than one any-of types are present, Firefly passes all

those facets to the plugin.

▪ The optional filter does not require any of the given types of facets to be present in the digital entity

in order for the plugin to process the item. If any of the types are present, Firefly passes those types

to the plugin.

▪ The not-any filter requires that a digital entity not contain any of the given types of facets to be

present for the filter to match.

There are two types of Firefly plugins:

▪ Simple plugins do not perform business logic and always display their actions to the user based

solely on the type of facets that are present in the digital entity. The sample plugin FoneVOIP

(available in the SDK) is an example of a simple plugin. The FoneVOIP plugin is invoked when

Firefly identifies a phone number. The user is given the option to dial the phone number every time,

with no other logic to execute.

▪ Resolving plugins perform business logic and conditionally provide additional actions to the user.

Typically a resolving plugin calls on an external service to perform the business logic. The sample

plugin Exempli (available in the SDK) is an example of a resolving plugin. The Exempli plugin is

invoked when Firefly identifies a musical artist. That plugin calls an external service to determine

whether there are any upcoming performances by that artist within a 50-mile radius of the user's

current location. Because the business logic is conditional, Firefly may not present any results or

actions to the user.

Resolving plugins define a resolver class, which is where the logic happens. Simple plugins do not define a resolver

class.

When Firefly identifies one or more items, it creates a user interface element for each of those items. When a user

taps one of these items, either immediately or from the Firefly history, a detail page opens to display the complete list

of actions that may be performed on that item. Your plugin defines a UI element that includes both a label and an

action to be performed. The action is typically an intent that deep-links into the plugin's app to reveal more content or

perform an action.

Digital Entities and Facets

When Firefly detects an item, it attempts to perform an identification. If Firefly identifies the item, it creates a digital

representation of the item called a digital entity. The DigitalEntity class represents digital entities in the Firefly

plugin architecture.

Each DigitalEntity object includes one or more facets, represented by the Facet class. Each facet

represents one aspect of the entity. Facets can be generated internally by Firefly when it identifies and creates the

digital entity, or provided by a resolving plugin. Note that one plugin cannot access the facets generated by another

plugin.

Each Facet consists of a facet type and a set of attributes. For a list of valid facet types,

see com.amazon.mw.entity.FacetType.

A digital entity will contain at most one of any type of facet. The facet's attributes are String key–value pairs.

Resolving plugins, through their resolver class, add a facet of the type MY_FACET to the DigitalEntity if they

wish to display something in the list of actions on the detail page. Adding a facet of the type MY_FACET is a way to

store information resulting from the resolving plugin's business logic so that it can be passed back to the plugin when

the plugin creates a label for its action and handles its click event. Examples of the types of data that can be stored

in MY_FACET include a string to display in the user interface, a unique ID number representing a database index

needed in order to execute an intent when the item is clicked, or other contextual information such as a timestamp or

geolocation data that is used when an item is accessed from Firefly's history and clicked at a time distant from when

the initial identification was made.

Filters

https://web.archive.org/web/20171208112521/https:/developer.amazon.com/public/binaries/content/assets/javadoc/fire-phone/reference/com/amazon/mw/entity/facettype.html

Your plugin defines a set of filters that describes which facets your plugin is interested

in. The DigitalEntityFilter class represents a filter. Firefly uses the plugin's filters to determine when the

plugin should be invoked. If the facets in an identified item's digital entity match the set of filters defined in the

plugin's DigitalEntityFilter, that plugin is invoked. Once the filter set is applied to an

incoming DigitalEntity, only those facets that were specified by the filters are passed through to the plugin for

further processing. The only exception is if a resolving plugin produces a facet, it is automatically added to

the DigitalEntity without the DigitalEntityFilter needing to specify the MY_FACET facet type.

There are four types of filters available:

▪ The required filter defines which facet types must be present in the DigitalEntity. All required

facet types must be present in order for processing to continue.

▪ The any-of filter defines a set of facet types of which at least one must be present. At least one of

the any-of facet types must be present in order for processing to continue.

▪ The optional filter defines facet types that may be present. If an optional facet type is present, it will

be included in the DigitalEntity. If an optional facet type is not present, processing continues

as long as the required and any-of filters have been satisfied.

▪ The not-any filter requires that a digital entity not contain any of the given types of facets to be

present for the filter to match.

The following DigitalEntityFilter methods are used to define the filter criteria:

▪ Use addRequiredFacets(FacetType...) to define required facet types.

▪ Use addAnyOfFacets(FacetType...) to define any-of facet types.

▪ Use addOptionalFacets(FacetType...) to define optional facet types.

A DigitalEntityFilter must include at least one required or any-of facet type.

In this example, the plugin whose filter is shown is invoked for both music and video identifications and it also

receives Amazon product information if it is available:

1

2

3

DigitalEntityFilter filter = new DigitalEntityFilter();

filter.addAnyOfFacets(FacetType.MUSIC, FacetType.VIDEO);

filter.addOptionalFacets(FacetType.PRODUCT);

User Interface Elements

When Firefly identities an item, it displays a tappable label on the screen. When users tap the label, a detail page

opens. The detail page contains a list of labels that represent actions the user can take on the identified item. For

example, if Amazon sells the item, one of the built-in actions is to purchase that item from Amazon. Your plugins can

add additional actions to the list.

To add actions to the detail list, your plugin must define a Label and implement an onClick() method that is

invoked by Firefly when your label is tapped. Extend the DigitalEntityUI class to do both these things.

The DigitalEntityUI class has two abstract methods that you must implement:

▪ getLabel() returns a Label that includes information such as a description of the action that will

take place when the label is tapped. The label should not contain time-sensitive information because

the user may not interact with your plugin immediately after an identification is made. The label will

remain visible in Firefly's history and it is possible the user may interact with your plugin quite some

time after the initial identification is made. getLabel() should return quickly, otherwise Firefly

may abandon the request and issue an error. To ensure getLabel() returns within the time

allotted, all business logic should be performed in a resolving plugin's Resolver class, which is

given approximately seven seconds of processing time, and the result of the business logic should

be stored in a MY_FACET facet for use by getLabel().

▪ onClick() is a listener that is called when your plugin's label is tapped. The normal response is

for your plugin to send an intent to a detail page within your app, although this is not strictly

necessary and you may send any valid intent. Note that onClick() may not be called immediately

after an identification is made – actions on identified items may also be picked from Firefly's history.

Plugin Types

There are two types of Firefly plugins. Both types of plugin allow you to add additional actions to an identified item's

detail page.

▪ Simple plugins do not perform business logic and always display their actions to the user based

solely on the type of facets that are present in the digital entity. The sample plugin FoneVOIP

(available in the SDK) is an example of a simple plugin. The FoneVOIP plugin is invoked when

Firefly identifies a phone number. The user is given the option to dial the phone number every time,

with no other logic to execute.

▪ Resolving plugins perform business logic and conditionally provide additional actions to the user.

Typically a resolving plugin calls on an external service to perform the business logic. The sample

plugin Exempli (available in the SDK) is an example of a resolving plugin. The Exempli plugin is

invoked when Firefly identifies a musical artist. That plugin calls an external service to determine

whether there are any upcoming performances by that artist within a 50-mile radius of the user's

current location. Because the business logic is conditional, Firefly may not present any results or

actions to the user.

To create a simple plugin, extend the SimplePlugin class. To create a resolving plugin, extend

the ResolvingPlugin class. Both of these base classes have abstract methods you must implement. Those

methods are:

▪ createDigitalEntityUI(DigitalEntity), which is a factory method to create and

return a new DigitalEntityUI that defines the plugin's user interaction.

▪ getDigitalEntityFilter(), which returns a DigitalEntityFilter that describes the

types of facets that are relevant for this plugin.

▪ getPluginDescription(), which returns a one line description of the plugin's function.

▪ onError(PluginError), which is called in the event of an error in either the configuration or

runtime interaction with a plugin.

Additionally, your resolving plugin must

implement createDigitalEntityResolver(DigitalEntity). This is a factory method that returns a

new Resolver instance that processes a DigitalEntity that matches

the DigitalEntityFilter returned by getDigitalEntityFilter(). The Resolver instance is where

you perform your business logic.

Resolvers for Resolving Plugins

The Resolver class allows a resolving plugin to extend a Firefly-identified item's information. For example, if Firefly

identifies a song, the Exempli sample concert ticket plugin's Resolver could contact a web service and add

information about upcoming concerts in the area by that artist to the item's DigitalEntity.

When Firefly invokes a resolving plugin, the code in the Resolver class's resolve() method is executed. This is

where the business logic takes place. If the resolve() method does not return within seven seconds, Firefly may

abandon the request and issue an error. Errors can be caught by your resolving

plugin's onError(PluginError) method.

If, as a result of the business logic, there is relevant information to add to the DigitalEntity,

your resolve() method should return a Facet of the type MY_FACET. The returned Facet should contain

information needed for display by the DigitalEntityUI's Label, as well as any information that needs to be

passed as an intent extra to the plugin's app via the DigitalEntityUI's onClick() method. If there is nothing

relevant to add, resolve() returns null and a "no result" label is produced.

Method Calls in Context

The following steps outline the sequence of method calls that are made once Firefly identifies an item.

1. Firefly identifies an item and creates a digital entity with one or more facets.

2. Plugins with matching digital entity filters are identified and invoked by the system.

3. If the plugin is a resolving plugin, createDigitalEntityResolver() is called to create the

resolver, and Resolver.resolve() is invoked. If resolve() returns null, processing stops.

4. For simple plugins and resolving plugins whose resolve() method did not return

null, createDigitalEntityUI() is called and DigitalEntityUI.getLabel() is

called to get the display label.

5. The user navigates to the detail page, either immediately after the identification is made, or at some

later date from the Firefly history, and clicks on a label.

6. createDigitalEntityUI() is called and DigitalEntityUI.onClick() is called to

perform the action.

Discovering and Registering Plugins

If your app has the appropriate manifest declarations (described in the next section), Firefly automatically registers
the plugin and enables it in Firefly's left panel.

Configuring the Android Manifest

There are some changes you need to make to your AndroidManifest.xml in order to be able to develop and

use Firefly plugins. The changes are the same for both simple and resolving plugins.

First, declare the package name in the <manifest> element. The package name becomes the plugin name in

Firefly. The plugin will become a new plugin if the package name changes.

1

2

3

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.amazon.mw.exempli"

 ...>

Second, request permission for this app to be recognized as a Firefly plugin.

1

2

<!-- declare the Firefly permission -->

<uses-permission android:name="com.amazon.mw.permission.PLUGIN" />

Third, within the <application> element, declare that you are using the Firefly library, including the

required="false" attribute to allow the app to run on devices without Firefly capabilities.

1

2

<!-- Uses the Firefly library -->

<uses-library android:name="com.amazon.mw.sdk" android:required="false"/>

Fourth, also within the <application> element, register the Firefly plugin service and declare

the PLUGIN_CONSUMER permission to protect the plugin by ensuring that only Firefly has permission to

communicate with it. Also declare the Firefly intent filters.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<!-- Register the Firefly plugin service.

 The PLUGIN_CONSUMER permission protects the plugin by ensuring

 only Firefly has permission to communicate with it.

 exported="true" allows external applications or services (Firefly)

 to interact with this plugin. -->

<service android:name=".ExempliPlugin"

 android:permission="com.amazon.mw.permission.PLUGIN_CONSUMER"

 android:exported="true">

 <!-- Set the intent filter for Firefly plugins -->

 <intent-filter>

 <action android:name="amazon.intent.action.mw.IMPORT_PLUGIN" />

 </intent-filter>

</service>

The following example shows the previous code snippets in context.

1

2

3

4

5

6

7

8

9

10

11

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.amazon.mw.exempli"

 ...>

 ...

 <!-- declare the Firefly permission -->

 <uses-permission android:name="com.amazon.mw.permission.PLUGIN" />

https://web.archive.org/web/20171208112521mp_/http:/schemas.android.com/apk/res/android
https://web.archive.org/web/20171208112521mp_/http:/schemas.android.com/apk/res/android

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 <application ...>

 ...

 <!-- Uses the Firefly library -->

 <uses-library android:name="com.amazon.mw.sdk" android:required="false"/>

 <!-- Register the Firefly plugin service.

 The PLUGIN_CONSUMER permission protects the plugin by ensuring

 only Firefly has permission to communicate with it.

 exported="true" allows external applications or services (Firefly)

 to interact with this plugin. -->

 <service android:name=".ExempliPlugin"

 android:permission="com.amazon.mw.permission.PLUGIN_CONSUMER"

 android:exported="true">

 <!-- Set the intent filter for Firefly plugins -->

 <intent-filter>

 <action android:name="amazon.intent.action.mw.IMPORT_PLUGIN" />

 </intent-filter>

 </service>

 </application>

</manifest>

Sample Code

The SDK includes code samples that show how to build simple and resolving plugins.

Tips and Tricks

When developing a plugin you may notice caching behavior where a plugin doesn't get called if Firefly re-identifies
the same item. To clear the cache, open the left panel, disable your plugin, then re-enable it.

Related Resources

▪ Firefly SDK

▪ Understanding Firefly

▪ Firefly Plugin Examples

https://web.archive.org/web/20171208112521/https:/www.developer.amazon.com/public/solutions/devices/fire-phone/overview/firefly-sdk
https://web.archive.org/web/20171208112521/https:/www.developer.amazon.com/public/solutions/devices/fire-phone/docs/understanding-firefly
https://web.archive.org/web/20171208112521/https:/www.developer.amazon.com/public/solutions/devices/fire-phone/docs/firefly-plugin-examples

